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Abstract—Multiple Kernel Clustering (MKC) has emerged as a
prominent research domain in recent decades due to its capacity
to exploit diverse information from multiple views by learning an
optimal kernel. Despite the successes achieved by various MKC
methods, a significant challenge lies in the computational com-
plexity associated with generating a consensus partition from the
optimal kernel matrix, typically of size n × n, where n represents
the number of samples. This computational bottleneck restricts
the practical applicability of these methods when confronted with
large-scale datasets. Furthermore, certain existing MKC algo-
rithms derive the consensus partition matrix by fusing all base
partitions. However, this fusion process may inadvertently overlook
critical information embedded in individual base kernels, poten-
tially leading to inferior clustering performance. In light of these
challenges, we introduce an innovative and efficient multiple kernel
k-means approach, denoted as FAMKKM. Notably, FAMKKM in-
corporates two approximated partition matrices instead of the orig-
inal individual partition matric for each base kernel. This strategic
substitution significantly reduces computational complexity. Ad-
ditionally, FAMKKM leverages the original kernel information to
guide the fusion of all base partitions, thereby enhancing the quality
of the resulting consensus partition matrix. Finally, we substantiate
the efficacy and efficiency of the proposed FAMKKM through
extensive experiments conducted on six benchmark datasets. Our
results demonstrate its superiority over state-of-the-art methods.

Index Terms—Multi-view clustering, partition learning, multiple
kernel k-means, data fusion.

I. INTRODUCTION

C LUSTERING is a fundamental algorithm for assigning
each object to its corresponding class, widely used in
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machine learning and computer vision communities [1], [2],
[3], [4], [5], [6], [7]. With the increasing availability of data from
diverse sources, object data can be represented by heterogeneous
features, making it necessary to develop advanced multi-view
clustering methods to handle this kind of datasets effectively
[8], [9], [10], [11], [12], [13], [14], [15]. Although these methods
have shown potential for multi-view data clustering, capturing
the intrinsic critical information of large-scale datasets in the era
of big data remains a challenging problem.
K-means based clustering has been widely used in clustering

analysis due to its simplicity and mathematical tractability. Over
the past decades, many variants of k-means clustering methods
have been proposed in the literature, such as [16], [17], [18],
[19], [20], [21], [22]. In order to handle complex multi-view
datasets, multiple kernel k-means based algorithms (MKKM)
have been proposed. For example, Li et al. [23] developed a local
kernel alignment method to improve the clustering performance
by utilizing the variation among samples. Since multiple kernel
clustering aims to utilize a group of pre-defined kernel matrices
to explore the multi-view data structure, the selected kernels
may become redundant as the number of views increases. To
capture the correlations among multiple kernel matrices, Liu
et al. [24] integrated a matrix-induced regularization term into
the proposed method. In most existing MKKM methods, a com-
mon assumption is taken that the unified optimal kernel matrix
is generated by using a linear combination of all base kernel
matrices [10], [25], [26]. Although this assumption reduces
the computational complexity, the representation capability of
the unified kernel may be limited. To address this issue, an
optimal neighborhood kernel clustering method is proposed in
[27] to improve the representability of the unified kernel matrix.
Moreover, several MKKM methods have been developed to
handle incomplete views, where the rows or columns of base
kernels are absent in some scenarios, e.g., [28], [29], [30].

In the multiple kernel k-means clustering algorithms men-
tioned above, the objective functions differ in various aspects,
but they all need to generate a consensus clustering partition
matrix. Based on the stage of clustering information exploita-
tion, existing MKKM methods can be broadly categorized into
two categories: early-fusion [31], [32], [33], [34], [35] and
late-fusion [28], [36], [37], [38], [39]. The first category jointly
optimizes the kernel coefficient and the consensus clustering
partition matrix based on all kernel matrices, resulting in a better
unified partition matrix with the guidance of original kernel
information. However, this approach increases computational
complexity significantly due to the eigen-decomposition of the
kernel matrix with the size of n× n. The second category
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generates all base partitions independently from each kernel and
then fuses them to obtain the consensus partition matrix. This
approach derives the consensus partition matrix at the partition
level rather than the kernel level, significantly alleviating com-
putational complexity by introducing a group of smaller base
partition matrices. However, the final clustering performance
highly depends on the quality of each base partition without the
interaction of original kernel information.

Considering that the generation of base partitions from each
corresponding kernel matrix results in the loss of complementary
information, we propose a joint framework for fusing all base
partitions and kernel matrices. This aims to produce a more rep-
resentative and unified partition matrix, which can enhance the
final clustering performance. However, the current challenge lies
in obtaining the base partitions from the original kernel matrices
with reasonable computational overhead. The typical approach
for generating base partitions is through eigen-decomposition,
which requires O(n3) computational complexity and is chal-
lenging to apply to large-scale multi-view datasets. To overcome
this, we introduce two approximated partition matrices in the
partition generation step and propose a simple and effective
multiple kernel k-means clustering method. Furthermore, we
theoretically establish the conceptual equivalence between ap-
proximated partition generation and existing partition gener-
ation. Our proposed method can achieve superior clustering
performance with less computational overhead than other state-
of-the-art MKKM, as demonstrated by subsequent experimental
results.

In summary, the main contributions of this paper include:
� We develop a unified framework that combines partition

fusion and kernel fusion, allowing the two steps to com-
plement each other. This approach enables us to generate a
more effective partition matrix that incorporates valuable
information from the original kernel matrices.

� We propose the use of two approximated partition matrices
to mitigate the computational complexity of our proposed
method fromO(n2) orO(n3) toO(n). We present theoret-
ical proof that optimizing the two approximated partitions
is conceptually equivalent to optimizing the original parti-
tion derived from each kernel independently.

� An alternating iterative optimization algorithm is devel-
oped to solve the formulated model, and extensive experi-
mental results demonstrate the efficiency and effectiveness
of the proposed method on six benchmark datasets.

The structure of this paper is as follows. Section II provides
a brief review of k-means clustering and its variant, multiple
kernel k-means clustering. The proposed method and its cor-
responding optimization solutions are presented in Sections III
and IV, respectively. To demonstrate the effectiveness of the
proposed method, Section V describes extensive experiments.
Finally, concluding remarks are provided in Section VI.

II. RELATED WORK

A. Kernel K-Means Clustering

Given a single-view data matrix X = [x1, ..., xn] ∈ Rn×d,
characterized by n samples and d features. We assume that it

can be segmented into k clusters denoted as X = [X1, ..., Xk],
wherek represents the number of clusters, andXi = [xi

1, ..., x
i
si
]

signifies the ith cluster comprising si samples. In this context,
the objective function for the k-means clustering algorithm can
be formally expressed as follows [40]:

min
k∑

i=1

si∑
j=1

∥∥xi
j − ci

∥∥2 . (1)

where ci =
∑si

j=1 x
i
j/si represents the centroid of the ith clus-

ter. Let us introduce the vector ei = [1, ..., 1]� ∈ Rsi , enabling
us to derive ci =

Xiei
si

. Subsequently, we formulate the follow-
ing expression:

min

si∑
j=1

∥∥xi
j − ci

∥∥2 = min ||Xi(Isi − eie
�
i /si)||2F . (2)

Due to (Isi − eie
�
i /si)

2 = (Isi − eie
�
i /si), the following equa-

tions hold:

min ||Xi(Isi − eie
�
i /si)||2F

= minTr(X�
i (Isi − eie

�
i /si)Xi)

= minTr(X�
i Xi)− Tr(X�

i (eie
�
i /si)Xi). (3)

By introducing an orthogonal matrix H that satisfies:

H =

⎡
⎢⎢⎢⎢⎣

e1√
s1

e2√
s2

. . .
ek√
sk

⎤
⎥⎥⎥⎥⎦ , (4)

the (1) can be reformulated as follows:

min
H

Tr(X�X)− Tr(X�HH�X) s.t. H�H = Ik, (5)

where Ik represents the identity matrix with the size of k ×
k. Additionally, for ease of expression, H is referred to as the
partition matrix in our paper.

Considering that the data distribution can not be sufficiently
depicted in the original feature space for some complex datasets,
a feature mappingϕ(·) is introduced to map samples into a repro-
ducing kernel Hilbert space (RKHS) H, i.e., φi = ϕ(xi). Since
the mapping ϕ(·) is implicitly defined in most cases, we often
construct the kernel matrix as K(xi,xj) = φ(xi)

�φ(xj), and
the corresponding objective function of k-means is formulated
as [41], [42]:

min
H

Tr(K(In −HH�)) s.t. H�H = Ik. (6)

Although (6) has demonstrated satisfactory performance in
data clustering, the quality of the selected kernels greatly affects
the final clustering results, and determining the optimal kernel in
realistic scenarios is challenging. To address this issue, several
kernel k-means based multi-view clustering algorithms have
been proposed, based on the assumption that the optimal kernel
is represented by a combination of pre-defined base kernels. This
topic will be further discussed in the next section.
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Fig. 1. Framework of FAMKKM. First, according to the feature mapping function ϕ(·), the kernel matrices {K(i)}vi=1 are constructed from the multi-view data.
Second, approximated partition matrices {H(i)}vi=1 and {G(i)}vi=1 are simultaneously generated from each kernel and then the proposed method is adopted to
obtain the consensus partition matrix F with fusing these approximated partition matrices. Finally, the k-means clustering algorithm is applied on F to produce
the final clustering results.

B. Multiple Kernel K-Means Clustering

Given an optimal kernel Kγ =
∑v

i=1 γ
2
i K

(i), the multiple
kernel version of objective function in (6) can be rewritten as:

min
H,γ

Tr(Kγ(In −HH�))

s.t. H�H = Ik, γ
�1v = 1, γv ≥ 0, ∀v. (7)

For (7), a two-step alternate optimization algorithm is usually
adopted to obtain the unified kernel matrix H, on which the
standard k-means is performed to generate the final clustering
results [43].

Based on the objective function outlined above, several vari-
ants have been developed to enhance clustering performance,
including those presented in [26], [44], [45]. Although these
variants demonstrate promising results, we have observed that
many suffer from cubic complexity, primarily due to eigen-
decomposition on the unified kernel matrix. As a result, the
following section will propose a straightforward yet effective
method for reducing the computational complexity associated
with eigen-decomposition.

III. PROPOSED METHOD

A. Notations

In this section, we briefly introduce the notations adopted
in this paper. To differentiate between variables, matrices, and
vectors are represented by bold uppercase and lowercase letters,
respectively, while scalars are denoted in non-bold italic font. Let
M ∈ Rn×d be a matrix with n samples and d features, where
Tr(M) and M� denote its trace and transpose, respectively, and
Mij represents its (i, j)th element. The identity matrix of size
n× n is represented by In, and mi denotes the ith element of
vector m.

B. Overview

The proposed FAMKKM follows the flowchart shown in
Fig. 1. First, the original multi-view data matrices undergo
a transformation into kernel matrices, denoted as {K(i)}vi=1,
facilitated by the kernel space mapping ϕ(·), commonly re-
ferred to as kernel generation. Second, we concurrently generate
approximated partition matrices {H(i)}vi=1 and {G(i)}vi=1 for
each kernel, derived directly from their corresponding kernel
matrices. Subsequently, the proposed fusion method is em-
ployed to consolidate these approximated partition matrices,
ultimately yielding the unified partition matrix F. Finally,
we employ the standard k-means clustering algorithm on the
consensus partition matrix F to derive the final clustering
results.

C. Approximated Multiple Kernel K-Means Clustering

As discussed above, the computational complexity of mul-
tiple kernel clustering methods primarily lies in conducting
eigen-decomposition on the original kernel matrices, incurring a
computational complexity of O(n3). To this end, we develop a
novel strategy to alleviate this computational overhead on the
basis of Theorem 1. Specifically, we introduce two approx-
imated partition matrices, denoted as H and G, to address
the computational intricacies associated with extant multiple
kernel clustering techniques. Instead of relying solely on the
original single partition matrix, our proposed method incorpo-
rates these two approximated partition matrices throughout the
entire optimization process. This strategic shift serves to mitigate
the complexity of partition matrix optimization. Notably, this
reduction is particularly pronounced when the parameter k,
representing the number of clusters, is considerably smaller
than n. In this context, the computational burden is notably
lightened, as only an n× k matrix size is involved in the
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eigen-decomposition, as opposed to the original n× n kernel
matrix.

Theorem 1: Minimizing (6) is conceptually equivalent to
maximize Tr(H�KG) with constraints H�H = G�G = Ik.

Proof: Suppose the semi-positive definite kernel matrix K
can be represented by K = U

∑
U�, according to singular

value decomposition (SVD), the following inequality can be
obtained:

Tr(H�KG)

= Tr
(
H�U

∑
U�G

)

≤ 1

2

⎛
⎝||H�U

1
2∑

||2F + ||G�U

1
2∑

||2F

⎞
⎠

=
1

2

(
Tr(H�KH) + Tr(G�KG)

)

≤ 1

2

(
Tr(H�KH) +

k∑
i=1

σi

)
(8)

where {σi}ki=1 are the top k largest eigenvalues of kernel
matrix K. When H = G, the inequality holds. Noticed that
if we consider the comprehensive proof of Theorem 1 purely
from a mathematical standpoint, it is essential to acknowledge
that the minimization of (6) may not be entirely conceptu-
ally equivalent to the maximization of Tr(H�KG) under the
constraints H�H = G�G = Ik. However, within the context
of our proposed method, where partition matrices H and G
are both introduced to represent the same original partition, it
becomes imperative that they maintain conceptual equivalence.
This represents a foundational constraint that must be rigorously
satisfied in our proposed method. To ensure this strict obeys the
conceptual equivalence, our proposed method exclusively con-
siders scenarios where the equality condition in (8) holds. In this
light, Theorem 1 stands as a reasonable and accurate represen-
tation of our proposed approach, i.e., maximizing Tr(H�KG)
is conceptually equivalent to the minimize of (6). �

As stated in Theorem 1, we establish a more efficient approach
for generating partitions from individual kernel matrices when
compared to prior methods. Leveraging this advancement, we
proceed to formulate the initial objective function as follows:

max
H,G

v∑
i=1

Tr(H(i)�K(i)G(i)) + λ1Tr(H(i)�G(i))

s.t. H(i)�H(i) = Ik,G
(i)�G(i) = Ik. (9)

where λ1 is a trade-off parameter introduced into the formula-
tion. Since partition matrices H and G are both employed to
represent the same original partition, it is imperative that they
remain as similar as possible. To achieve this goal, we impose
a maximize alignment constraint on them, as denoted by the
second term in (9). Noticed that either of these matrices can
be effectively employed to generate the final clustering results,
as they assume equivalent roles as the original single partition
matrix.

Once the base partitions H and G have been derived for all
views, the question naturally arises: how can we generate an
improved consensus partition for subsequent clustering tasks?
The intuitive approach might involve averaging all base parti-
tions. However, this method fails to account for the distinctions
among these base partitions, particularly the significance of
each kernel partition. Inspired by the previous work in [43], our
proposed method adopts a straightforward yet highly effective
multiple partitions fusion strategy to integrate the information
of all partition matrices into a consensus one, and the specific
formulation is outlined as follows:

max
F,R,W,γ

Tr

((
F�

v∑
i=1

γiH
(i)R(i)

)

+Tr

(
F�

v∑
i=1

γiG
(i)W(i)

))

s.t. R(i)�R(i) = Ik,W
(i)�W(i) = Ik,

F�F = Ik,

v∑
i=1

γi
2 = 1, γi ≥ 0. (10)

For (10), the critical problem is how to efficiently measure the
difference between these partition matrices and the consensus
one, such that the complementary information of each partition
matrix can be fully captured and preserved. Accordingly, two
partition matrices R and W are employed to ensure that each
partition matrix is closer to the consensus one by encoding the
difference between them. Furthermore, considering that each
partition contributes to the consensus one differently, weight
coefficient γ is introduced to store the prior information in the
proposed method.

It is well-recognized that partition matrices are derived from
the original kernel matrices, a process that inherently entails the
loss of some information. In acknowledgment of this inherent
limitation, we undertake the endeavor of integrating partition
information and kernel information within a unified framework,
facilitating mutual information enhancement. Consequently, the
final objective function is constructed through the joint optimiza-
tion of (9) and (10), as formulated below:

max
H,G,F,
R,W,γ

v∑
i=1

Tr
(
H(i)�K(i)G(i)

)
+ λ1

v∑
i=1

Tr
(
H(i)�G(i)

)

+ λ2Tr

((
F�

v∑
i=1

γiH
(i)R(i)

)

+Tr

(
F�

v∑
i=1

γiG
(i)W(i)

))

s.t. H(i)�H(i) = Ik,G
(i)�G(i) = Ik,R

(i)�R(i) = Ik,

W(i)�W(i) = Ik,F
�F = Ik,

v∑
i=1

γi
2 = 1, γi ≥ 0. (11)

where λ2 is also a trade-off parameter.
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TABLE I
SUMMARY OF SIX BENCHMARK MULTIPLE KERNEL DATASETS

Similar to the conventional multiple kernel k-means cluster-
ing method, the first term within (11) characterizes the process of
partition generation for each kernel, with the primary divergence
is that two approximated partition matrices are introduced to
significantly reduce computational costs by virtue of Theorem 1.
As mentioned above, two approximated partition matrices are
employed to represent the same original one, which prompts the
introduction of the second term to keep the consistency between
them. Following the construction of partitions associated with
each kernel matrix, the task of generating the optimal consensus
partition is addressed through the application of an adaptive
weighted partition fusion mechanism, embodied in the final
two terms of (11). Consequently, our proposed method, by
employing the above strategies to formulate the overall objec-
tive function, simultaneously integrates the fusion of partition
information and kernel information within a unified framework.
This integration is beneficial to enhance clustering performance,
surpassing the outcomes attainable through partition fusion or
kernel fusion alone. Furthermore, a notable advantage of (11)
lies in its capacity to significantly reduce overall computa-
tional complexity, a benefit attributed to the introduction of
two approximated partition matrices. A detailed analysis of this
reduction in computational complexity will be elaborated in the
subsequent section.

IV. OPTIMIZATION

As observed in (11), the proposed method contains six
variables, i.e., H, G, F, R, W, and γ. Since all variables are
coupled together in (11), it is difficult to directly solve them in
one step. Thus, an iterative optimization algorithm is designed
to solve it in this section, and the specific process is shown as
follows.

Update F : When the variables H, G, R, W, and γ are held
constant, (11) can be rendered in a simplified form:

max
F

Tr

(
F�λ2

v∑
i=1

γi

(
H(i)R(i) +G(i)W(i)

))

s.t. F�F = Ik. (12)

Update H: When considering the fixed variables F, G, R,
W, and γ, we can express (11) in the following form:

max
H

v∑
i=1

Tr
(
H(i)�

(
K(i)G(i) + λ1G

(i) + λ2γiFR
(i)�
))

s.t. H(i)�H(i) = Ik. (13)

Update G: With variables F, H, R, W, and γ being fixed,
(11) is equivalent to:

max
G

v∑
i=1

Tr
(
G(i)�

(
K(i)�H+ λ1H

(i) + λ2γiFW
(i)�
))

s.t. G(i)�G(i) = Ik. (14)

Update R: With variables F, H, G, W, and γ being fixed,
(11) can be denoted as:

max
R

v∑
i=1

Tr
(
R(i)�

(
λ2γiH

(i)�F
))

s.t. R(i)�R(i) = Ik.

(15)

Update W : With variables F, H, G, R, and γ being fixed,
(11) is reformulated as:

max
W

v∑
i=1

Tr
(
W(i)�

(
λ2γiG

(i)�F
))

s.t.W(i)�W(i) = Ik.

(16)

The above objective functions, from (12) to (16), are all can
be generalized as:

max
U

Tr(U�V) s.t.U�U = Ik. (17)

For example, if we define V = λ2

∑v
i=1 γi(H

(i)R(i) +
G(i)W(i)) and U = F, the objective function of (17) is equiv-
alent to the problem (12). When we replace U and V with
the other variables, a similar optimization problem can also be
obtained, thereby the details of them are not introduced here. In
the context of (17), the optimal solution for U can be readily
obtained by performing a singular value decomposition (SVD)
on the matrix V. To be specific, assuming that the matrix V
takes the form V = M

∑
N�, where M ∈ Rn×k,

∑ ∈ Rk×k,
N ∈ Rk×k, then the closed-form solution forU can be expressed
as U = MN�. The specific proof process can refer to [46].

Update γ: With variables F, H, G, R, and W being fixed,
(11) can be expressed as:

max
γ

v∑
i=1

γiβi s.t.
v∑

i=1

γi
2 = 1, γi ≥ 0. (18)

whereβi = Tr(F�(H(i)R(i) +G(i)W(i))). According to [43],
the optimal solution of (18) is γi =

βi√∑v
i=1 βi

2
.

In a nutshell, the details for solving FAMKKM are outlined
in Algorithm 1.

A. Convergence Analysis

As aforementioned, the proposed method is not a joint convex
problem and we adopt an alternate optimization algorithm to
solve it. Based on the above optimization process, the optimal
solution of each sub-problem can be easily obtained, thereby the
whole algorithm converges obviously. The detailed convergence
analysis of each sub-problem is shown as follows:

Updating F : Suppose Y =
∑v

i=1 λ2γiH
(i)R(i), accord-

ing to Section IV-D in [47], we can obtain the inequality
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TABLE II
CLUSTERING RESULTS ON SIX BENCHMARK MULTIPLE KERNEL DATASETS IN TERMS OF SEVEN METRICS
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Algorithm 1: Fast Approximated Multiple Kernel K-
Means.

Input: base kernel matrices {K(i)}vi=1, parameter λ1 and
λ2.

1: Initialize {H(i)}vi=1, {G(i)}vi=1, {R(i)}vi=1,
{W(i)}vi=1, t = 1.

2: while not converged do
3: Update F via solving (12).
4: Update {H(i)}vi=1 via solving (13).
5: Update {G(i)}vi=1 via solving (14).
6: Update {R(i)}vi=1 via solving (15).
7: Update {W(i)}vi=1 via solving (16).
8: Update {γ}vi=1 via solving (18).
9: t = t+ 1.
10: end while
Output: Optimal partition F.

Fig. 2. Running Time comparison of different methods on all multiple kernel
datasets.

as Tr(F�Y) ≤ 1
2 (Tr(F�F) + Tr(Y�Y)) ≤ λ2

2 (k + kv2), and
the inequality also holds whenY =

∑v
i=1 λ2γiG

(i)W(i). Thus,
the sub-problem in (12) is upper-bounded. Additionally, since
the first-order derivation of (12) with respect to F is fixed,
the whole objective function is monotonic. Accordingly, this
sup-problem can reach convergence.

Updating H , G, R, W , γ: These sup-problems are similar
to the problem in (12), and we do not introduce them in detail
here.

In summary, when the expression of (11) is simplified as:

max
H,G,F,
R,W,γ

Θ(H,G,R,W,γ,F), (19)

the following inequality holds:

Θ(Ht,Gt,Rt,Wt,γt,Ft)

≤ Θ(Ht+1,Gt+1,Rt+1,Wt+1,γt+1,Ft+1) (20)

where superscript t represents the tth iteration in the whole
optimization. Therefore, (11) monotonically increases at each
iteration. Additionally, since each independent sub-problem is
upper-bounded, the whole objective function is upper-bounded.
Accordingly, the proposed method can reach convergence.

Fig. 3. Parameter sensitivity of the proposed method in terms of ACC.

B. Time Complexity Analysis

The proposed method contains six variables, i.e., F, H, G,
R, W, and γ. Thus, the complexity of FAMKKM mainly lies in
solving them. According to the above optimization processes,
we can find that the complexity of updating F, H, G, R and W
are allO(nk2) since the optimal solution of each variable is gen-
erated by adopting eigen-decomposition on the matrix with the
size of n× k. Additionally, for updating γ, the time complexity
is O(v). Therefore, the total computational complexity of the
proposed method for each iteration is O(6nk2 + v), which is
linear with the number of samples n.

V. EXPERIMENTS

In this section, extensive experiments are conducted to verify
the effectiveness of the proposed method.

A. Datasets

Similar to [39], we evaluate the proposed method FAMKKM
on six widely used multiple kernel datasets, including
Pollen [48], Caltech102-101, Caltech102-201, Caltech102-301,
flower1022, and ALOI-1003, and the detailed information about
these datasets are shown in Table I.

1Online. [Available]: http://www.vision.caltech.edu/archive.html
2Online. [Available]: http://www.robots.ox.ac.uk/vgg/data/flowers/
3Online. [Available]: http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
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TABLE III
CLUSTERING PERFORMANCE OF DIFFERENT LEVEL INFORMATION FUSION ON SIX BENCHMARK DATASETS

Fig. 4. Convergence curves of FAMKKM on all multiple kernel datasets.

B. Compared Methods

In the experiments, we compare the proposed method with
the following multiple kernel clustering methods to verify its
effectiveness and efficiency.

AMKKM: Average Kernel k-means.
MKKM [49]: Multiple Kernel Fuzzy Clustering.
ONKC [27]: Optimal Neighborhood Kernel Clustering with

Multiple Kernels.
MKMR [24]: Multiple Kernel k-means Clustering with

Matrix-induced Regularization.
MKC_NKSS [50]: Multiple Kernel Clustering with

Neighbor-kernel Subspace Segmentation.
SMSC [51]: A Spectral Clustering with Self-weighted Mul-

tiple Kernel Learning Method for Single-cell RNA-seq Data.
SimpleMKKM [52]: SimpleMKKM: Simple Multiple Ker-

nel k-means.
MKKM-SR [53]: Multiple Kernel K-Means Clustering with

Simultaneous Spectral Rotation.

C. Experimental Settings

For all compared methods, we have downloaded their public
source codes from the corresponding websites, and the hyper-
parameters involved in their methods are tuned to make them
achieve optimal clustering results in the experiments. Addi-
tionally, for the proposed method FAMKKM, it contains two
parameters, i.e., λ1 and λ2. Since the optimal parameter values
are difficult to determine for each dataset, a grid-searching
strategy is adopted in the experiments. Specifically, we tune λ1

and λ2 in a range of [0.01, 0.1, 1], respectively. Furthermore, to
effectively evaluate the performance of all compared methods on

Authorized licensed use limited to: Zhejiang Normal University. Downloaded on January 09,2025 at 03:49:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: FAST APPROXIMATED MULTIPLE KERNEL K-MEANS 6179

the above-mentioned multiple kernel datasets, seven clustering
metrics are selected in the experiments, including F1 measure
(Fscore), Precision, Recall, Normalized Mutual Information
(NMI), Adjusted Rand Index (ARI), Accuracy (ACC), and Pu-
rity. For all competitors, we repeat them 50 times with random
initialization to mitigate the impact of k-means on the final
clustering results, and the corresponding averages and standard
deviation of the above metrics are reported in Table II. Since all
methods use Matlab in their experiments, our experiments are
also conducted on a PC with an Intel Core-i7-7700 CPU and
24GB RAM, Matlab R2020a.

D. Results and Analysis

In Table II, the best clustering results on each dataset are
bolded, and N/A denotes out-of-memory failure. According to
the results, we can obtain the following observations.
� Across all evaluation metrics, FAMKKM consistently

demonstrates superior performance when compared to
alternative methods, particularly outperforming existing
MKKM algorithms. For instance, on the ALOI-100
dataset, FAMKKM exhibits notable improvements, sur-
passing the second-best method (MKMR) by 4.87% and
3.61% in terms of F-score and ACC, respectively. These
performance differentials are consistently observed across
the various datasets listed in Table II, presenting the effi-
cacy of the proposed FAMKKM and its associated opti-
mization algorithm

� An additional major advantage of our proposed method
is the interactive fusion of partition information and ker-
nel information, a feature that distinguishes it from ex-
isting multiple kernel clustering algorithms. This fusion
capability constitutes a primary reason for FAMKKM’s
consistently superior performance across all benchmark
datasets. In contrast, other multiple kernel clustering
methods, such as SimpleMKKM and MKKM-SR, either
focus solely on fusing latent information at the parti-
tion level or the kernel matrix level. Our experimental
results affirm that our proposed approach significantly
outperforms these other methods. This advantage stems
from the inherent qualities of partition-level informa-
tion, which tends to exhibit less noise and feature re-
dundancy, and kernel matrix information, which is often
more informative. By exploiting both forms of information,
our approach efficiently generates an improved unified
kernel partition, thereby enhancing the final clustering
performance.

� As seen in Fig. 2, our proposed method also has the
advantage in terms of running time efficiency compared
to other methods. This advantage can be attributed to the
introduction of two approximated partition matrices. Like
many other methods, our proposed method also needs
to conduct SVD on the original kernel matrix to gen-
erate the clustering partition in each iteration. However,
FAMKKM specifically conducts SVD on a smaller matrix
with the size of n× k, resulting in a substantial reduction

in computational complexity, from O(n3) to O(n). Con-
sequently, compared with the other competitors, our pro-
posed method is more readily applied to large-scale multi-
ple kernel datasets in terms of clustering performance and
efficiency.

E. Model Evaluation

This section presents ablation experiments designed to assess
the impact of utilizing different levels of information on the per-
formance of multiple kernel k-means clustering. To be specific,
partition level information and the original kernel information
are adopted separately to compare with the proposed method,
and the corresponding clustering results on six benchmark
datasets are presented in Table III. For ease of expression, the
method with only involves partition fusion is referred to as
MKKM_PF, and the other one is referred to as MKKM_KF.
As illustrated in Table III, it is evident that our proposed method
outperforms other techniques. This highlights the efficacy of
simultaneously exploiting partition-level and kernel-level infor-
mation in multiple kernel clustering. Moreover, by introduc-
ing two approximated partition matrices, our proposed method
can further reduce computational complexity. Based on these
clustering results, we conclude that our proposed method is a
straightforward yet highly effective approach to multiple kernel
clustering.

F. Parameter and Convergence Study

According to (11), it can be observed that the proposed
method contains two parameters, i.e., λ1 and λ2. To further
study the parameter sensitivity of FAMKKM on all multiple
kernel datasets, we conduct the parameter sensitivity analysis
experiments in this section, and the experimental results in terms
of ACC are given in Fig. 3. As seen in the figures, we can find
that the proposed method is not sensitive to two parameters on
all datasets. Within the given range of parameters, FAMKKM
can achieve satisfying performance.

In the aforementioned section, we have theoretically proved
the convergence property of the proposed method. Now the
experiments are conducted to further verify its convergence, and
the corresponding results are shown in Fig. 4. As can be seen, the
proposed method reaches convergence quickly, usually within
several iterations, which can be attributed to the fact that we
solve each sub-problem optimally.

VI. CONCLUSION

In this article, a simple yet effective multiple kernel k-means
clustering method is developed to address the large-scale data
clustering problem, namely, FAMKKM. By introducing two ap-
proximated partition matrices and coupling the partition fusion
and kernel fusion into a unified framework, the computational
complexity of the proposed method is significantly reduced, as
well as improving the final clustering performance. Results from
experiments validate the superiority of the proposed method
compared with the other algorithms.
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